Hysteresis modeling in ballistic carbon nanotube field-effect transistors
نویسندگان
چکیده
Theoretical models are adapted to describe the hysteresis effects seen in the electrical characteristics of carbon nanotube field-effect transistors. The ballistic transport model describes the contributions of conduction energy sub-bands over carbon nanotube field-effect transistor drain current as a function of drain-source and gate-source voltages as well as other physical parameters of the device. The limiting-loop proximity model, originally developed to understand magnetic hysteresis, is also utilized in this work. The curves obtained from our developed model corroborate well with the experimentally derived hysteretic behavior of the transistors. Modeling the hysteresis behavior will enable designers to reliably use these effects in both analog and memory applications.
منابع مشابه
Application of Neural Space Mapping for Modeling Ballistic Carbon Nanotube Transistors
In this paper, using the neural space mapping (NSM) concept, we present a SPICE-compatible modeling technique to modify the conventional MOSFET equations, to be suitable for ballistic carbon nanotube transistors (CNTTs). We used the NSM concept in order to correct conventional MOSFET equations so that they could be used for carbon nanotube transistors. To demonstrate the accuracy of our mod...
متن کاملBallistic (n,0) Carbon Nanotube Field Effect Transistors' I-V Characteristics: A Comparison of n=3a+1 and n=3a+2
Due to emergence of serious obstacles by scaling of the transistors dimensions, it has been obviously proved that silicon technology should be replaced by a new one having a high ability to overcome the barriers of scaling to nanometer regime. Among various candidates, carbon nanotube (CNT) field effect transistors are introduced as the most promising devices for substituting the silicon-based ...
متن کاملPerformance Projections for Ballistic Carbon Nanotube Field-Effect Transistors
The performance limits of carbon nanotube field-effect transistors ~CNTFETs! are examined theoretically by extending a one-dimensional treatment used for silicon metal–oxide– semiconductor field-effect transistors ~MOSFETs!. Compared to ballistic MOSFETs, ballistic CNTFETs show similar I – V characteristics but the channel conductance is quantized. For low-voltage, digital applications, the CNT...
متن کاملSources of Hysteresis in Carbon Nanotube Field-Effect Transistors and Their Elimination Via Methylsiloxane Encapsulants and Optimized Growth Procedures
The origins of gate-induced hysteresis in carbon nanotube fi eld-effect transistors are explained and techniques to eliminate this hysteresis with encapsulating layers of methylsiloxane and modifi ed processes for nanotube growth are reported. A combined experimental and theoretical analysis of the dependence of hysteresis on the gate voltage sweep-rate reveals the locations, types, and densiti...
متن کاملFast Convergent Schrödinger-Poisson Solver for the Static and Dynamic Analysis of Carbon Nanotube Field Effect Transistors
Carbon nanotube field-effect transistors (CNTFETs) have been studied in recent years as a potential alternative to CMOS devices, because of the capability of ballistic transport. In order to account for the ballistic transport we solved the coupled Poisson and Schrödinger equations for the analysis these devices. Conventionally the coupled Schrödinger-Poisson equation is solved iteratively, by ...
متن کامل